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1.  Introduction  

 

Vapourous cavitation occurs when the liquid pressure 

drops to the liquid vapour pressure. It may happen in two 

different types of cavitating flow: (1) a localized vapour 

cavity (large void fraction) and (2) distributed vapourous 

cavitation (small void fraction). The collapse of a large 

vapour cavity and the propagation of the shock wave 

through the vapourous cavitation zone cause the vapour 

change to liquid. When vapour cavities change to liquid, 

large pressures with steep wave fronts may happen. As an 

outcome, fluid transients may lead to severe accidents (De 

Almeida, 1991). Therefore, it is important to predict the 

commencement and amount of cavitation occurring in 

order to improve the performance and reliability of 

systems. 

 

Various types of vapourous cavitation models have been 

introduced (Wylie and Streeter, 1993; Bergant et al., 

2006) including discrete cavity and interface models. The 

discrete vapour cavity model (DVCM) (Wylie and 

Streeter, 1978; 1993) is the most popular model for 

column separation and distributed cavitation in recent 

years (Bergant et al., 2006). The DVCM may produce 

unrealistic pressure pulses (spikes) due to the collapse of 

multi-cavities (Bergant et al., 2007). Studies of the 

DVCM have suggested that using a weighting factor close 

to 1.0, restricting the number of reaches (Bergant and 

Simpson, 1994) and using an unsteady friction term in the 

DVCM improve the computational results. 

 

Practical implications of column separation led to 

intensive laboratory and field research starting at the end 

of 19th century (Joukowsky, 1900). Wylie and Streeter 

(1978, 1993) have described the DVCM in detail and they 

provided a computer code for its implementation. 

Researchers have attempted to incorporate a number of
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unsteady friction models into DVCM. Shuy and Apelt 

(1983) performed numerical analyses with a number of 

friction models including steady, quasi-steady and 

unsteady friction models. For the case of water hammer 

(no cavitation) they found little differences in the results 

of the models, but for the case with column-separation 

(two-phase flow) large discrepancies occurred. Brunone 

et al. (1991) used the DVCM in combination with an 

instantaneous-acceleration unsteady friction model. 

Significant discrepancies between experiment and theory 

were found for all runs when using a quasi-steady friction 

term. Bergant and Simpson (1994) investigated the 

performance of quasi-steady and unsteady friction models 

similar to those used by Shuy and Apelt (1983). The 

instantaneous-acceleration and convolution-based 

unsteady friction models gave the best fit with 

experimental data for the case of water hammer. 

Bughazem and Anderson (2000) developed the DVCM 

with an instantaneous-acceleration unsteady friction term 

and found good agreement between theory and 

experiment. Numerical studies by Bergant and Tijsseling 

(2001) have shown that unsteady friction may cause a 

significant damping of the pressure spikes observed in 

measurements. Shu (2003) extended a two-phase þow 

model with Zielkeôs (1968) friction model. 

 

In this study, water hammer with column separation has 

been modelled using the DVCM coupled with the Zielke 

(1968) and Vardy and Brown unsteady friction models 

and the quasi-steady friction model. The results and the 

efficiency of the friction models have been compared with 

each other and sensitivity of this method to some of the 

parameters affecting the DVCM have been investigated. 

First, the structure of the model is explained and then the 

model is considered to study the column separation in a 

reservoir-pipeline-valve system. 

 

2. Discrete Vapour Cavity Model 

 

In the DVCM, cavities are allowed to form at the 

computational sections if the computed pressure becomes 

less than the liquid vapour pressure. The classical water 

hammer solution is no longer valid at a vapour pressure 

section. Pure liquid with a constant wave speed c is 

assumed to occupy between computational sections. Each 

discrete vapour cavity is fully governed by two water 

hammer compatibility equations, one continuity equation 

for the vapour cavity volume and the constant vapour 

head. The compatibility equations (Wylie and Streeter, 

1993) and continuity equation for the cavity volume 

(Wylie, 1984), written in a finite-difference form for the i-

th computational section within the diamond grid, are: 

 

 

a) Water hammer compatibility equation along the C+ 

characteristic line (ȹx/ȹt = c): 
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b) Water hammer compatibility equation along the C- 

characteristic line (ȹx/ȹt = -c): 
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c) Continuity equation for the cavity volume:  
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Where x = distance along the pipe, c = liquid wave speed,  

f = Darcy-Weisbach friction factor, D = internal pipe 

diameter, g = gravitational acceleration, H = pressure 

head, A = cross-sectional flow area, Qu = upstream 

discharge, Qd = downstream discharge, vap" = discrete 

vapour cavity volume and ɣ = weighting factor.  

 

The weighting factor ɣ takes values between 0 and 1.0. 

The cavity collapses when its calculated volume becomes 

negative and the one-phase liquid flow is re-established 

and the water hammer solution  

 

2.1 Friction model 

 

The friction term in one-dimensional transient flow is 

expressed as the sum of the unsteady part fu and the quasi-

steady part fq: 

 

q uf f f= +
 

 

Setting fu = 0 leads to the quasi-steady friction model. 

There are several friction models which have been 

introduced by many researchers to consider the unsteady 

part. The Brunone model (Brunone et al., 1991) has 

special popularity because of its simplicity and accuracy. 

This model was improved by Vitkovsky in 1998 (Bergant 

and Simpson, 1994; Brunone et al., 1995): 
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Where, K is the Brunoneôs friction coefficient and x is the 

distance along the pipe and sign (V) = (+1 for V Ó 0 or -1 

for V < 0). Vardy and Brown (1996) proposed the 

following empirical relationship to derive the Brunoneôs 

coefficient analytically (Bergant et al., 2001; Vardy and 

Brown, 1996): 
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The Vardyôs shear decay coefýcient C* from Vardy and 

Brown (1996) is: 

 

a) laminar flow: 

 

0.00476C*=   (2)  

 

b) turbulent flow: 
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in which R = Reynolds number (R = VD/ɡ). 

 

The original version of Zielkeôs model (Zielke, 1968) is 

used in this paper. The model was analytically developed 

for transient laminar þow. The unsteady part of friction 

term is related to the weighted past velocity changes at a 

computational section: 
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in which j and k = multiples of the time step ȹt, W = 

weights for past velocity changes, ɡ = kinematic viscosity, 

Ű = dimensionless time, and coefficients { ni, i = 1, ... , 5}  

= { -26.3744, -70.8493, -135.0198, -218.9216, 322.5544} 

and {mi, i = 1, ... , 6} = {0.282095, -1.25, 1.057855, 

0.937500, 0.396696, -0.351563}. 

 

The velocity proýle analyses for turbulent unsteady þow 

allows o state that the relation (Eqn. (4)) proposed by 

Zielke is correct for turbulent unsteady þows if only a 

weighting function W would be related to the Reynolds 

number (Vardy and Brown, 1995). The Vardy and Brown 

obtained R-dependent weighting function W is: 
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According to the authors this model is valid for the initial 

Reynolds numbers R < 108 and for smooth pipes only. 

 

 

3. Experimental Apparatus 

 
The computational results are compared with the results 

of experimental studies conducted by Bergant and 

Simpson (1995) which were carried out using a long 

horizontal pipe with length of 37.20 m and inner diameter 

of 0.0221 m that connects upstream and downstream 

reservoirs (see Figure 1). The water hammer wave speed 

was experimentally determined as c = 1319 m/s. A 

transient event is initiated by a rapid closure of the ball 

valve. Pressures measured at the valve (Hv) and at the 

midpoint (Hmp) are presented in this paper. 

 

Figure 1: Experimental set up 

 

4. Comparison of Numerical Models 

 
In order to investigate the performance of the DVCM and 

the effects of different friction models on accuracy of the 

results, the numerical and experimental results are 

compared. Computational runs are performed for a rapid 

closure of the valve positioned at the downstream end of 

the horizontal pipe at the downstream reservoir (see Fig). 

The initial velocity is V0 = 0.30 m/s and the constant static 

head in the upstream reservoir and the vapour pressure 

head are Hur = 22 m and Hvap = -10.25 m. The rapid valve 

closure begins at time t = 0 s. To study the effects of mesh 

size, two numbers of reaches were selected, Nx = {32, 

128}. The weighting factor ɣ in Eqn. was chosen 0.5 and 

1.0 in order to investigate its impact on the accuracy of 
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the computational results. The maximum measured head 

at the valve is 95.6 m for t = 0.1766 s. 

 

Comparison of computational and measured results for 

the unsteady and quasi-steady friction models with an 

initial flow velocity V0 = 0.30 m/s is presented in agrees 

well till 0.22 sec. The discrepancies between the results 

are magnified at later. The maximum computed heads 

predicted by the models are: 

 

(1) DVCM-Brunoneôs unsteady friction model: 

  

Hv,max = {Nx = 32, ɣ = 1, 110.10 m at t = 0.173 s} 

 

(2) DVCM-Zielkeôs unsteady friction model: 

 

Hv,max = {Nx = 32, ɣ = 1, 104.25 m at t = 0.169 s} 

 

(3) DVCM-Vardy & Brownôs unsteady friction model: 

 

Hv,max = {Nx = 32, ɣ = 1, 105.12 m at t = 0.169 s} 

 

(4) DVCM-quasi-steady friction model: 

 

Hv,max = {Nx = 32, ɣ = 1, 118.49 m at t = 0.250 s} 

 

 
Figure 2: Comparison of computed and measured heads at the valve (Hv) and at the midpoint (Hmp):  

V0 = 0.3 m/s, ɣ = 1, Nx = 32. 
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The four models slightly overestimate the measured 

maximum heads. Brunone model yields better 

conformance with the experimental data while the other 

three models yield poor results, and it also gives a better 

timing of the transient event than the other three models. 

The Zielke model estimates the maximum head more 

accurately than the other three models. The Zielke, and 

Vardy and Brown models produce similar computational 

results and the time of maximum head is the same for 

both of them. The quasi-steady model estimates the 

maximum head and its time wrongly. 

 

In the unsteady friction models, unrealistic pressure 

pulses do not exist while in the quasi-steady friction 

model, the unrealistic pulses are distinguishable 

obviously. The four models exhibit an incapability to 

reproduce the experimental oscillations and disregard 

them and just reproduced them with sufficient accuracy in 

a short time immediately after closing the valve. 

 

 In order to investigate sensitivity of this method to the 

numbers of reaches, two different numbers of reaches  

Nx = {32, 128} were selected. Comparison of 

computational and measured results for the unsteady and 

quasi-steady friction models with an initial flow velocity 

V0 = 0.30 m/s and weighting factor ɣ = 1 is presented in 

Figures 3 to 6. The maximum computed heads predicted 

by the models are: 

 

1) DVCM-Brunoneôs unsteady friction model: 

  

Hv,max = {Nx = 32, 110.10 m at t = 0.173 s}                                                                                                  

Hv,max = {  Nx = 128, 110.31 m at t = 0.175 s}       

                                                                                                               

2) DVCM-Zielkeôs unsteady friction model:  

 

Hv,max = {  Nx = 32, 104.25 m at t = 0.169 s} 

     Hv,max = {  Nx = 128, 103.95 m at t = 0.171 s} 

 

3) DVCM-Vardy & Brownôs unsteady friction model:  

 

Hv,max = {  Nx = 32, 105.12 m at t = 0.169 s} 

     Hv,max = {  Nx = 128, 103.95 m at t = 0.171 s} 

 

4) DVCM-quasi-steady friction model:  

 

Hv,max = {  Nx = 32, 118.49 m at t = 0.250 s} 

     Hv,max = {  Nx = 128, 109.68 m at t = 0.176 s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Comparison of computed heads by the Brunone model with Nx = 32, 128 at the valve (Hv) and at the midpoint 

(Hmp): V0 = 0.3 m/s, ɣ = 1 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Comparison of computed heads by the Zielke model with Nx = 32, 128 at the valve (Hv) and at the midpoint (Hmp): 

V0 = 0.3 m/s, ɣ = 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Comparison of computed heads by the Vardy and Brown model with Nx = 32, 128 at the valve (Hv) and at the 

midpoint (Hmp): V0 = 0.3 m/s, ɣ = 1 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Comparison of computed heads by the quasi-steady friction with Nx = 32, 128 at the valve (Hv) 

and at the midpoint (Hmp): V0 = 0.3 m/s, ɣ = 1 

 

In both different numbers of reaches, both quasi-steady 

model  and unsteady models (Figures 3 to 5) slightly 

overestimate the maximum heads. Choosing different 

numbers of reaches has various effects on the four 

models. In the Brunone model, the larger number of 

reaches has become more successful to predict the time of 

the transient event but the smaller one estimates the 

maximum head more accurate and exhibits a capability to 

reproduce the experimental oscillations while the larger 

number of reaches disregards them. 

 

In the Zielke, Vardy and Brown, and quasi-steady models, 

the larger number of reaches has better agreement in 

terms of simulating the maximum head and its time. In 

the Zielke, and Vardy and Brown models, the smaller 

number of reaches is capable to predict the oscillations 

which exist in the experimental results. In the quasi-

steady model, the smaller number of reaches produces 

less unrealistic pressure pulses. 

 

In order to investigate the effects of a weighting factor on 

accuracy of the results, two different values of weighting 

factor ɣ = {0.5, 1.0} were selected. Comparison of 

computational and measured results for unsteady and 

quasi-steady models with an initial flow velocity V0 = 

0.30 m/s and number of reaches Nx = 32 is presented in 

Figures 7 to 10. The maximum computed heads predicted 

by models are: 

 

1) DVCM-Brunoneôs unsteady friction model: 

  

 Hv,max = {ɣ = 1, 110.10 m at t = 0.173 s}  

Hv,max = {ɣ = 0.5, 110.10 m at t = 0.173 s}   

                                                                                                                   

2) DVCM-Zielkeôs unsteady friction model:  

 

Hv,max = {ɣ = 1, 104.25 m at t = 0.169 s} 

Hv,max = {ɣ = 0.5, 105.91 m at t = 0.171 s} 

 

3) DVCM- Vardy & Brownôs unsteady friction model:  

 

Hv,max = {ɣ = 1, 105.12 m at t = 0.169 s} 

Hv,max = {ɣ = 0.5, 106.86 m at t = 0.172 s} 

 

4) DVCM-quasi-steady friction model:  

 

Hv,max = {ɣ = 1, 118.49 m at t = 0.250 s} 

Hv,max = {ɣ = 0.5, 118.46 m at t = 0.250 s} 

 

 



 

 

Figure 7: Comparison of computed heads by the Brunone model with ɣ = 0.5, 1 at the valve (Hv) and at the 

midpoint (Hmp): V0 = 0.3 m/s, Nx = 32 

 
 

Figure 8: Comparison of computed heads by the Zielke model with ɣ = 0.5, 1 at the valve (Hv) and at the 

midpoint (Hmp): V0 = 0.3 m/s, Nx = 32 



 

 

Figure  9: Comparison of computed heads by the Vardy and Brown model with ɣ = 0.5, 1 at the valve (Hv) 

and at the midpoint (Hmp): V0 = 0.3 m/s, Nx = 32 

 
 

Figure 10: Comparison of computed heads by the quasi-steady friction with ɣ = 0.5, 1 at the valve (Hv) and at 

the midpoint (Hmp): V0 = 0.3 m/s, Nx = 32 

 


